SKU: 03T0S02

200G OSFP56 SR4 Transceiver Hot Pluggable, MPO / MTP, 850nm VCSEL, OM3 70M / OM4 100M, **OIF-CMIS Management & DDM**

Part Number: FQ56-S9-M85-X1D-CD1

Overview

FQ56-S9-M85-X1D-CD1 is a parallel fiber optical transceiver module for 212.5Gbps data transmission applications at 850nm. It is ideally suited for datacom & storage area network (SAN/NAS) applications based on IEEE 802.3cd 200GBASE-SR4 standard. Designed for short range multi-lane data communication, the QSFP56 full-duplex optical module with MPO-12 APC receptacle integrates four independent transmitter and receiver channels each capable 53.125Gbps operation for an aggregate data rate of 212.5Gbps up to MMF OM3 70m / OM4 100m optical links.

Applications

- 200GBASE-SR4 Ethernet @212.5G
- Breakout to 4 x 50GBASE-SR Ethernet
- Data Centers Switch Interconnect
- Server and Storage Area Network Interconnect

Features

- Compliant with IEEE802.3cd 200GBASE-SR4
- Compliant with SFF-8665 QSFP56 MSA
- Compliant with IEEE 802.3bs CAUI-4 Interface
- 4 independent full-duplex channels
- Optical Data Rate PAM4 26.5625GBd per Lane
- Electrical Data Rate PAM4 26.5625GBd per Lane
- Built in quad Tx CDR and Rx CDR
- Hot Pluggable QSFP56 footprint
- 4CH 850nm VCSEL array transmitter
- 4CH PIN array receiver
- MPO-12 APC receptacle connector
- 2-wire interface for management and diagnostic monitor compliant with OIF-CMIS
- Single 3.3V power supply
- Link distance 70m over OM3 fiber and 100m over OM4 fiber
- Maximum power consumption 5W
- RoHS compliant

Sales@Ficer.com

SKU: 03T0S02

Laser Safety

- This is a Class 1 Laser Product complies with 21 CFR 1040.10 and 1040.11 except for conformance with IEC 60825-1 Ed. 3., as described in Laser Notice No. 56, dated May 8, 2019.
- Caution: Use of control or adjustments or performance of procedure other than those specified herein may result in hazardous radiation exposure.

Absolute Maximum Ratings

Parameters	Symbol	Min.	Max.	Unit
Storage Temperature	T _{ST}	-40	+85	°C
Storage Relative Humidity	RH	0	85	%
Supply Voltage	Vcc3	-0.5	+3.6	V

Recommended Operating Conditions

Parameters	Symbol	Min.	Тур.	Max.	Unit
Case Operating Temperature	Тор	0	-	+70	°C
Supply Voltage	Vcc	+3.13	+3.3	+3.47	V
Data Rate, per Lane (PAM4)	DR		26.5625		GBd
Data Rate Accuracy	ΔDR	-100		+100	ppm
Bit Error Rate (Pre-FEC)	BER			2.4x10 ⁻⁴	
Bit Error Rate (Post-FEC)	BER			1x10 ⁻¹²	
Supply Current (+3.3V)	Icc			1800	mA
Power Consumption	Р			6	W
Transceiver Power-on Initialization Time				2000	ms
Control Input Voltage High	Vih	2.0		Vcc	V
Control Input Voltage Low	VIL	GND		0.8	V
Control Output Voltage High	Vон	2.0		Vcc	V
Control Output Voltage Low	Vol	GND		0.8	V

Sales@Ficer.com

TEL+886-2-2898-3830

SKU: 03T0S02

Transmitter Electro-optical Characteristics

 V_{CC} = 3.13V to 3.47V, T_{OP} = 0 °C to 70 °C

Parameters	Symbol	Min.	Тур.	Max.	Unit	Note
Optical Data Rate, per Lane	DRop		26.5625		GBd	PAM4
Optical Wavelength, each Lane	λc	840	850	860	nm	
Spectral Width (RMS) (Modulated)	Δλ			0.6	nm	
Average Launch Power, per Lane	Pavg	-6.5		+4	dBm	1
Outer Optical Modulation Amplitude (OMAouter), per Lane	Рома	-4.5		+3	dBm	2
Launch Power in OMAouter minus TDECQ, per Lane	OMA- TDECQ	-5.9			dB	
Transmitter and Dispersion Eye Clouser for PAM4, per Lane	TEQCQ			4.5	dB	3
Optical Extinction Ratio	ER	3			dB	
Average Launch Power OFF, per Lane	Poff			-30	dBm	
Optical Return Loss Tolerance	ORLT			12	dB	
Encircled Flux			≧86% at 19μm ≦30% at 4.5μm			4
Electrical Data Rate, per Lane (TP1)	DREL		26.5625		GBd	PAM4
Differential Data Input Voltage (TP1a)	VIN-PP	900			mVpp	5
Differential Termination Mismatch (TP1)				10	%	
Single-ended Voltage Tolerance Range (Min) (TP1a)		-0.4		3.3	V	
DC Common Mode Input Voltage (TP1)	CMVIN	-350		2850	mV	6

Note1: Average launch power, each lane (min) is informative and not the principal indicator of signal strength. A transmitter with launch power below this value cannot be compliant; however, a value above this does not ensure compliance.

Note2: Even if the TDECQ < 1dB, the OMA_{Outer} (min) must exceed the minimum value specified here.

Note3: TDECQ is specified and measured as per IEEE802.3.cm Clause 150.8.5.

Note4: If measured into type A1a.2, or type A1a.3, or type A1a.4, 50um fibers in accordance with IEC 61280-1-4.

Note5: With the exception to IEEE 802.3bs 120E.3.1.2 that the pattern is PRBS31Q or scrambled idle.

Note6: DC common mode voltage generated by the host. Specification includes effects of ground offset voltage.

SKU: 03T0S02

Receiver Electro-optical Characteristics

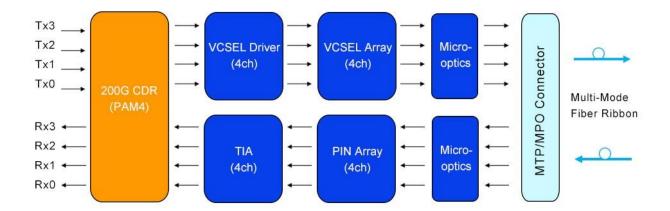
 V_{CC} = 3.13V to 3.47V, T_{OP} = 0 °C to 70 °C

Parameters	Symbol	Min.	Тур.	Max.	Unit	Note
Optical Data Rate, per Lane	DRop		26.5625		GBd	PAM4
Optical Wavelength, each Lane	λc	840	850	860	nm	
Damage Threshold, per Lane	D тн	+5			dBm	1
Average Receive Power, per Lane	Prx-avg	-8.4		+4	dBm	2
Receive Power (OMAouter), per Lane	Prx-ома			+3	dBm	
Receive Sensitivity (OMA _{Outer}), per Lane	SENoma	Max	(-6.5, SECQ-	-7.9)	dBm	3
Stressed Receiver Sensitivity (OMAouter), per Lane	SRSOMA			-3.4	dBm	4
Receiver Reflectance	R _{RX}			-12	dB	
LOS De-Assert	LOSD			-9	dBm	
LOS Assert	LOSA	-30		-10	dBm	
LOS Hysteresis	LOSHY	0.5			dB	
Electrical Data Rate, per Lane (TP4)	DREL		26.5625		GBd	PAM4
Differential Data Output Voltage (TP4)	Vout-pp			900	mVpp	
AC Common Mode Output Voltage, RMS (TP4)				17.5	mV	
Differential Termination Mismatch (TP4)				10	%	
Transition Time, 20% to 80% (TP4)		9.5			ps	
Near-end Eye Symmetry Mask Width (ESMW) (TP4)		0.265			UI	
Near-end Eye Height, Differential (TP4)		70			mV	
Far-end Eye Symmetry Mask Width (ESMW) (TP4)			0.2		UI	
Far end Eye Height, Differential (TP4)		30			mV	
Far-end Pre-cursor ISI Ratio (TP4)		-4.5		2.5	%	
DC Common Mode Output Voltage (TP4)	СМУоит	-350		2850	mV	5

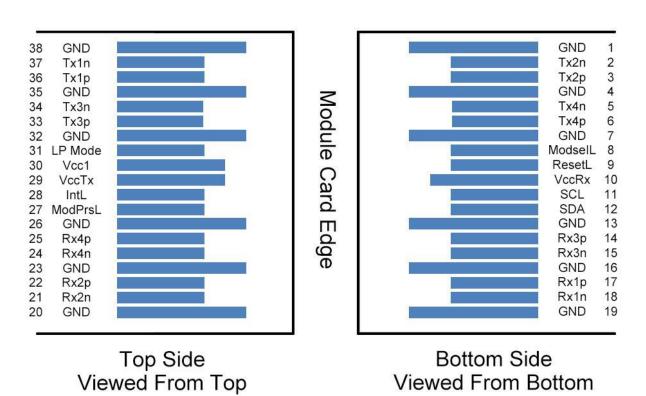
Note1: The receiver shall be able to tolerate, without damage, continuous exposure to a modulated optical input signal having this power level on one lane. The receiver does not have to operate correctly at this input power.

Note2: Average receive power, per lane (min) is informative and not the principal indicator of signal strength. A received power below this value cannot be compliant; however, a value above this does not ensure compliance.

Note3: Receiver sensitivity is informative and is defined for a transmitter with a value of SECQ up to 4.5dB.


Note4: Measured with conformance test signal at receiver input for the BER of 2.4x10⁻⁴.

Note5: DC common mode voltage generated by the host. Specification includes effects of ground offset voltage.


1

SKU: 03T0S02

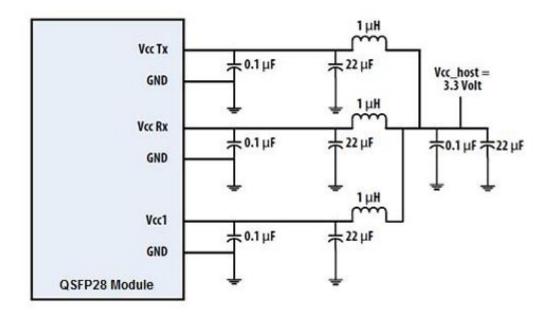
Transceiver Block Diagram

Pin Assignment

SKU: 03T0S02

Pin Description

Pin	Logic	Name	Function / Description
1		GND	Module Ground
2	CML-I	Tx2n	Transmitter Inverted Data Input
3	CML-I	Тх2р	Transmitter Non-Inverted Data Input
4		GND	Module Ground
5	CML-I	Tx4n	Transmitter Inverted Data Input
6	CML-I	Тх4р	Transmitter Non-Inverted Data Input
7		GND	Module Ground
8	LVTLL-I	ModSelL	Module Select
9	LVTLL-I	ResetL	Module Reset
10		VccRx	+3.3V Power Supply Receiver
11	LVCMOS-I/O	SCL	2-Wire Serial Interface Clock
12	LVCMOS-I/O	SDA	2-Wire Serial Interface Data
13		GND	Module Ground
14	CML-O	Rx3p	Receiver Non-Inverted Data Output
15	CML-O	Rx3n	Receiver Inverted Data Output
16	16 GND		Module Ground
17	CML-O	Rx1p	Receiver Non-Inverted Data Output
18	18 CML-O Rx1n 19 GND 20 GND		Receiver Inverted Data Output
19			Module Ground
20			Module Ground
21	CML-O	Rx2n	Receiver Inverted Data Output
22	CML-O	Rx2p	Receiver Non-Inverted Data Output
23		GND	Module Ground
24	CML-O	Rx4n	Receiver Inverted Data Output
25	CML-O	Rx4p	Receiver Non-Inverted Data Output
26		GND	Module Ground
27	LVTLL-O	ModPrsL	Module Present
28	LVTLL-O	IntL	Interrupt
29		VccTx	+3.3V Power Supply Transmitter
30		Vcc1	+3.3V Power Supply
31	LVTLL-I	LPMode	Low Power Mode
32		GND	Module Ground


SKU: 03T0S02

33	CML-I	Тх3р	Transmitter Non-Inverted Data Input
34	CML-I	Tx3n	Transmitter Inverted Data Input
35		GND	Module Ground
36	CML-I	Tx1p	Transmitter Non-Inverted Data Input
37	CML-I	Tx1n	Transmitter Inverted Data Input
38		GND	Module Ground

Note1: GND is the symbol for signal and supply (power) common for QSFP56 modules. All are common within the QSFP56 module and all module voltages are referenced to this potential unless otherwise noted. Connect these directly to the host board signal common ground lane.

Note2: VccRx, Vcc1 and VccTx are the receiver and transmitter power suppliers and shall be applied concurrently. Recommended host board power supply filtering is shown below. Vcc Rx, Vcc1 and Vcc Tx may be internally connected within the QSFP56 transceiver module in any combination. The connector pins are each rated for a maximum current of 1000mA.

Recommended Power Supply Filter

SKU: 03T0S02

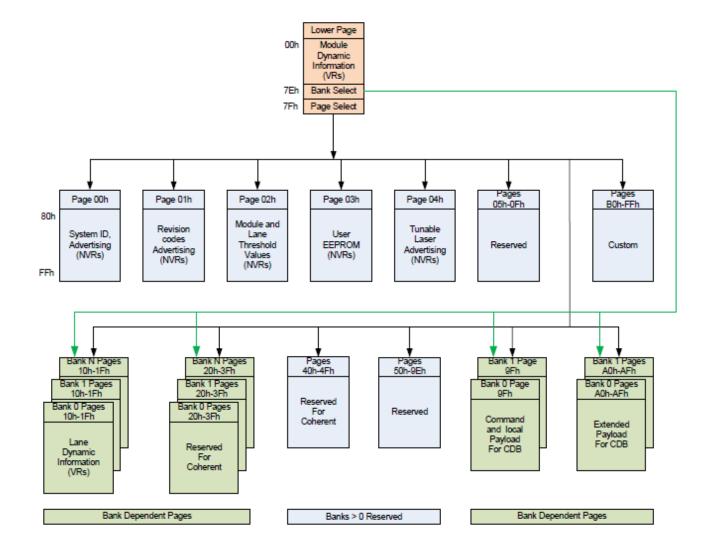
Digital Diagnostic Functions

As defined by the QSFP56 MSA, Ficer's QSFP56 transceivers provide digital diagnostic functions via a 2-wire serial interface, which allows real-time access to the following operating parameters:

- Transceiver temperature
- Laser bias current (4-Channel)
- Transmitted optical power (4-Channel)
- Received optical power (4-Channel)
- Transceiver supply voltage

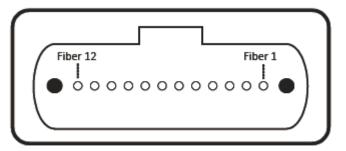
It also provides a sophisticated system of alarm and warning flags, which may be used to alert end-users when particular operating parameters are outside of a factory-set normal range.

The operating and diagnostics information is monitored and reported by a Digital Diagnostics Controller (DDC) inside the transceiver, which is accessed through the 2-wire serial interface. When the serial protocol is activated, the serial clock signal (SCL pin) is generated by the host. The positive edge clocks data into the QSFP56 transceiver into those segments of its memory map that are not write-protected. The negative edge clocks data from the QSFP56 transceiver. The serial data signal (SDA pin) is bi-directional for serial data transfer. The host uses SDA in conjunction with SCL to mark the start and end of serial protocol activation. The memories are organized as a series of 8-bit data words that can be addressed individually or sequentially. The 2-wire serial interface provides sequential or random access to the 8 bit parameters, addressed from 000h to the maximum address of the memory.


For more detailed information including memory map definitions, please see the QSFP56 MSA Specification.

Sales@Ficer.com

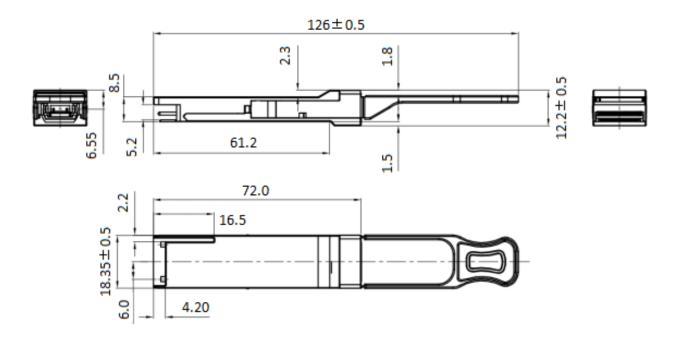
TEL+886-2-2898-3830


SKU: 03T0S02

Digital Diagnostic Memory Map (CMIS)

SKU: 03T0S02

Optical Interface Lanes and Assignment


Outside View of the QSFP56 Module MPO-12

Fiber #	Lane Assignment
1	Rx0
2	Rx1
3	Rx2
4	Rx3
5,6,7,8	Not used
9	Tx3
10	Tx2
11	Tx1
12	Tx0

lane assignment

SKU: 03T0S02

Mechanical Dimensions

(All Dimensions are ±0.20mm Unless Otherwise Specified, Unit: mm)

Ordering Information

TEL+886-2-2898-3830

Part No.	Tx	Rx	Link	DDM	Temp.
FQ56-S9-M85-X1D-CD1	850 nm	850 nm	MM OM3 70m MM OM4 100m	Yes	0~70°C

Note: Distances are indicative only. To calculate a more precise link budget based on specific conditions in your application, please refer to the optical characteristics.

Sales@Ficer.com